Solution Opportunities Regarding Global Change from the Agricultural and Forestry Sectors

Dennis Hazel, Ph.D., C.F. Extension Forestry Specialist

North Carolina

Cooperative Extension Service
NORTH CAROLINA STATE UNIVERSITY

COLLEGE OF AGRICULTURE AND LIFE SCIENCE

Objectives

- Describe why "agriculture" & "forestry" are significant sectors to look to for global change solutions
- Provide a partial "laundry list" of some action items to be considered by the Climate Action Plan Advisory Group
- Discuss several action items in more detail that have promise for significant benefit

Opportunities are Enormous Because the Industries Are Large

- Forestry is the state's second largest industry
 - 18.3 million acres in NC (2002)
 - 78% owned by 650,000+ individuals
 - Economic benefit to NC of \$29+ billion
- Agriculture still very significant
 - 9 million acres in NC (2004)
 - 52,000 farms
 - Net farm income \$1.9+ billion

Four General Ways for Agriculture and Forestry to Contribute Solutions

REDUCE EMISSIONS

- CO₂ which constitutes most greenhouse gasses
- CH₄ (methane)
- $-N_2O$
- PROMOTE CARBON SEQUESTRATION (capturing carbon from the atmosphere with live plants and storing it long term)
 - e.g. increase land area with plant crops and forests
 - Improve productivity (growth rates and health) of our crops and forests

Four Ways - Continued

- SUBSTITUTE FARM AND FOREST BIOMATERIALS FOR OTHERS
 - Use and produce biofuels instead of burning fossil fuels
 - Use wood in place of other materials
- PRESERVE LAND IN FARM AND FOREST USE

However, a note of caution must be added!!!!

- Forestry lost one million acres to non-forest use between 1990 and 2002 (5%).
- Farm acreage in NC dropped 2+% between 2000 and 2004.
- However, could global change solutions from these sectors help retain land in farm and forest?

Possible Key Actions – Agriculture*

- Protect farmland from permanent conversion
 - Incentives
 - Conservation easements
 - Continued employment of use value taxation
 - BETTER MARKETS so that farming is more profitable
- Expand soil carbon storage
 - Conservation tillage
 - Less summer fallow fields
 - Increasing use of winter cover crops
 - Reduction of C loss through improved crop management

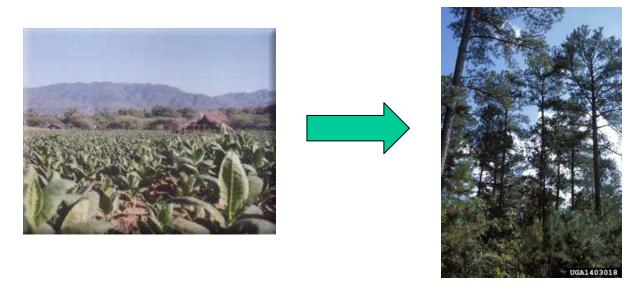
Possible Key Actions – Agriculture

- Improve feed efficiency
 - Reduces methane emissions
- Reduce emissions from land
 - Use improved nutrient management including precision agriculture and manure management
 - Use deep rooted species on field borders (helps manage soil N)

Possible Key Actions – Agriculture

- Expand use of renewable energy on-farms and expand the use of farm products as feedstocks for off-farm energy production
 - Manure digesters
 - Farm gassifiers
 - Using biodiesel in farm equipment
 - Feedstocks for biodiesel
 - Feedstocks for ethanol production
 - Feedstocks for direct combustion

Possible Key Actions – Agriculture


 Develop more efficient farm to market routing of farm products (results in reduced transportation use)

Encourage windmill use on farms

Possible Key Actions – Agriculture

 Plant erodible or no-longer used cropland to trees (very large potential gain in carbon sequestration! 3.2 tons per acre per year for managed pine plantations vs. about 100 pounds a year for some crops)

Possible Key Actions – Agriculture

 Establish dedicated biofuel crops such as switchgrass or hybrid close-grown trees

Possible Key Actions – Forestry

- Reduce conversion to non-forest use
 - BETTER MARKETS through healthy forest industry!
 - Land trusts
 - Conservation easements
 - Incentives (tax, cost-sharing, others)
 - Continued employment of use value taxation

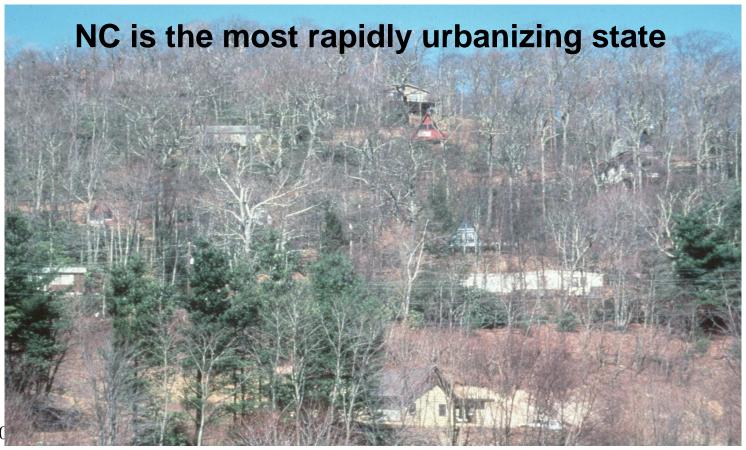
Possible Key Actions – Forestry

- Increase use of residential and urban trees and promote better management of them
- Restore non-forest lands to forests (wetlands, pastures, cropland)
- Develop improved trees for special uses through genetic and biotechnology

Possible Key Actions – Forestry Employ Better Utilization During Harvesting

Higher yields during logging

Lower site prep & planting cost


Possible Key Actions – Forestry

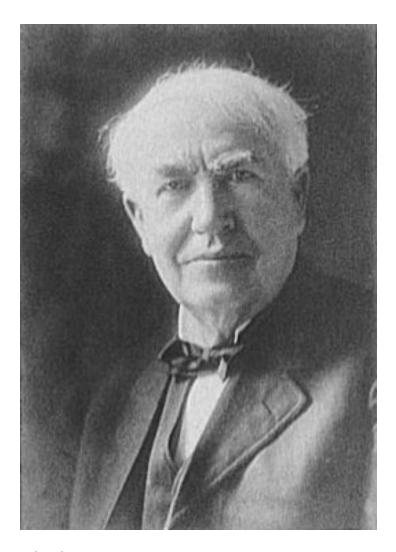
Possible Key Actions – Forestry

Possible Key Actions – Forestry Wildfire Risk Management/Firewise

Possible Key Actions – Forestry Salvage

Average annual mortality in NC 1990-2002: 426 million cu ft

Possible Key Action - Forestry

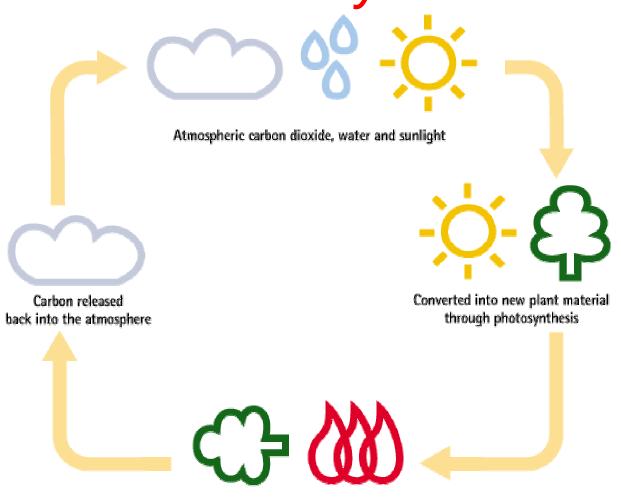


 Improve carbon sequestration through nutritional amendments including ag wastes

What Items Might Be the Biggest Bang for the Buck for Ag & Forestry?

- 1. Using "biomass" for direct production of energy
 - Steam for heating and chilling
 - Electric power generation
- 2. The Biomass-Based Biorefinery WHY ARE THESE SO IMPORTANT?

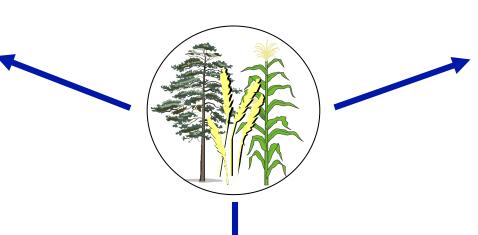
Thomas Edison (1847-1931)



"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait 'til oil and coal run out before we tackle that."

So what's are the least expensive solar collectors currently available?

Biomass – It's All about the Carbon Cycle



12/28/2006

Graph from Susan LeVan Whice

Biomass. It's a Significant and Realizable Opportunity

Fuels

12/28/2006
Graphic borrowed from Fred Deneke

Electric Power

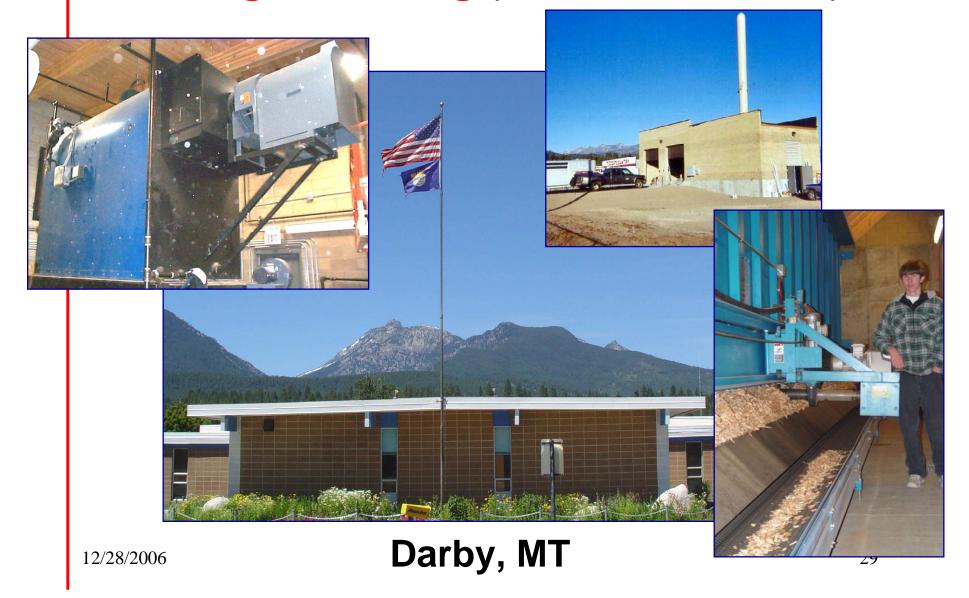
Agricultural Biomass

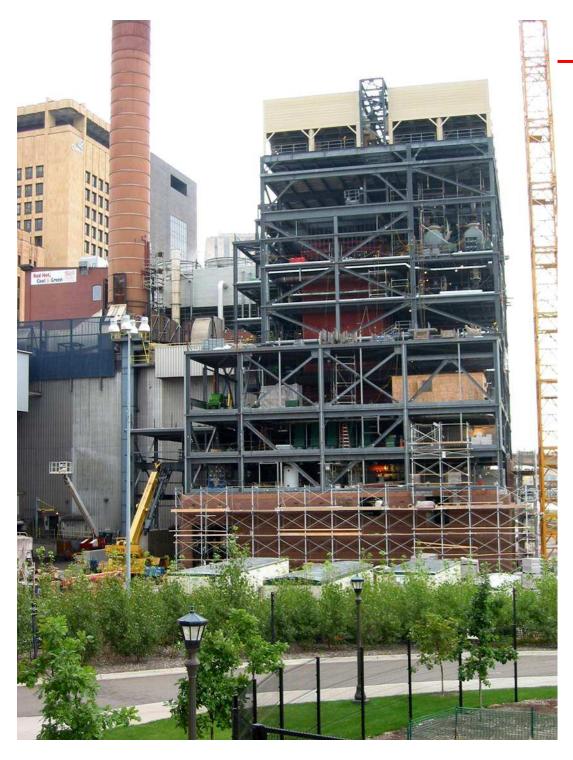
- Agriculture biomass includes crop, animal, and processing residues (straw, corn stover, sugarcane, animal manure, orchard prunings, hulls, shells, pits, seeds, and waste water from food processing operations
- Dedicated agriculture crops such as corn, sorghum, switchgrass, etc.
- Rapid fiber forest crops such as silage alder, hybrid poplar, sycamore, and willow

Forest Biomass

- Forest biomass includes harvesting and thinning residues, and thinnings from hazardous fuel reduction, habitat improvement, and other ecosystem restoration projects
 - Trees & woody plants, including limbs, tops, needles, leaves, and other woody parts
 - Grown in a forest, woodland, or rangeland
 - Products of forest management, restoration, & hazardous fuel reduction treatments
 - For energy, it will not include higher value traditional forest products including sawtimber, chip 'saw, veneer poles, and pilings

Electricity





12/28/2006

28

Heating & Chilling (Fuels for Schools)

Combinations (District Energy St. Paul, MN)

- Urban wood waste
- Daytime
 - Heating & cooling to downtown
 - Electricity to grid
- Night
 - Cooling downtown
 - Uses electricity

Animal Wastes Products for Electricity and Liquid Fuels

Electricity, Poultry Litter - Minnesota

Electricity, Poultry Litter – New Bern

Electricity, Poultry Litter - Scotland

Ag Bio-diesel

THERE IS EXISTING USE IN NC Residues and Wood Wastes

- Maybe 225+ plants with 300+ boilers
- Sawmills
- Furniture plants
- Dry kilns
- Co-generators
- Brick plants
- Many long-term users of renewable

The new industrial biorefinery

Biomass Feedstock

- Trees
- Grasses
- Agricultural Crops
- Agricultural Residues
- Animal Wastes
- Municipal Solid Waste

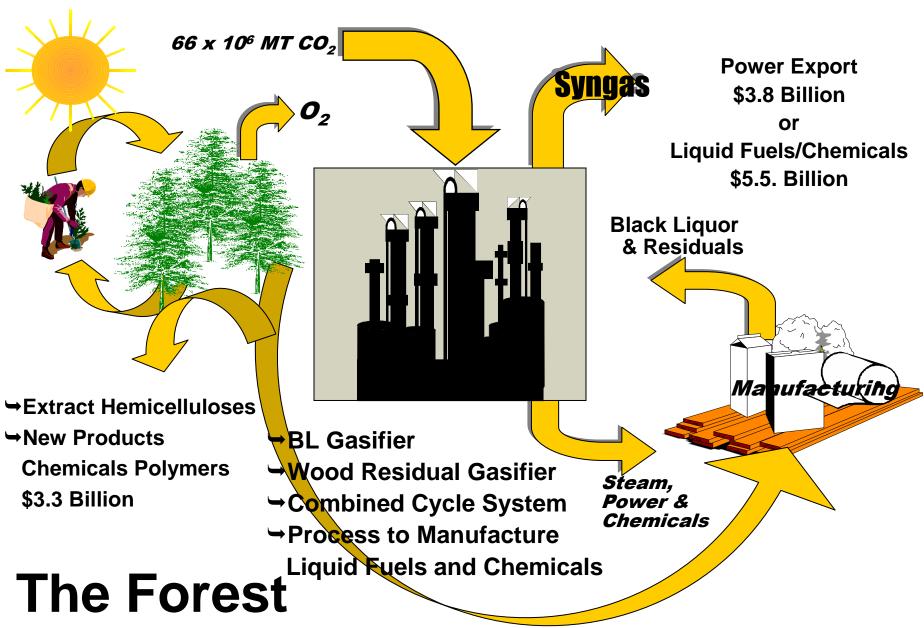
Conversion Processes

- Enzymatic Fermentation
- Gas/liquid Fermentation
- Acid Hydrolysis/Fermentation
- Gasification
- Combustion
- Co-firing

USES

Fuels:

- Ethanol
- Renewable Diesel


Power:

- Electricity
- Heat

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty acids
- Acetic Acid
- Carbon black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

Food and Feed

The Forest Biorefinery

(borrowed from Susan LeVan)

Net Revenue Assumptions:

Acetic Acid - \$1.73/gallon Purchased Electricity - \$43.16/MWH
Ethanol - \$1.15/gallon Exported Electricity - \$40.44/MWH34
Pulp - \$100/ton net profit Renewable Fisher Tropsch Fuel - \$57/bbl

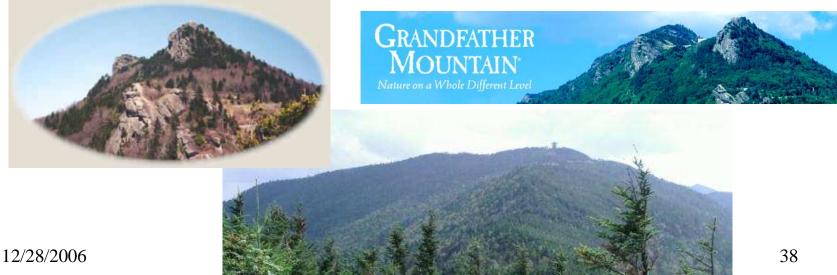
Many Cobenefits of Implementing Solutions in Ag & Forestry Sectors

- Using renewable fuels
- Using carbon-neutral fuels
- More incentives to keep land in farms and forest
- Keeping \$\$\$ spent for energy in North Carolina
- New jobs in rural areas

Potential Benefits to NC of an RPS*

- Economic (net gain) Benefits
 - Lower rate impact than new nuclear + coal!
 - 3,000+ net jobs per year
 - \$1.5 billion more in wages through 2017
 - \$2.7 billion increase in Gross State Product
 - Keeps more \$'s circulating in NC economy

Social Benefits


- Creates local wealth statewide; close to the land
- Strengthens rural counties
- Environmental Benefits
 - Helps resolve hog and poultry waste/pollution issues
 - Improves air and water quality
 - Reduces NC's CO₂ emissions by several million metric tons

Co-Benefits - Continued

- Forest health is improved
- Strategies to reduce emissions are generally soil friendly
- Reduced dependence on foreign energy sources
- Improved national balance of trade
- Markets for ag and forestry waste products

There Can Be a Price to Waiting: Example Spruce/Fir Plant Community in NC Mountains

Summary

- Agriculture and forestry have solutions to offer – with help!
- Terrific traditional and new partners exists to help identify and implement solutions
- Many, many co-benefits of turning to agriculture and forestry
- As Snuffy Smith said years ago: "Times a wastin'!"

QUESTIONS?

